ISOLATION AND STRUCTURE DETERMINATION OF A NEW IRIDAL FROM IRIS SIBIRICA

F.-J. MARNER,* K. SIMIC, B. SCHOLZ, and B. KÜSTER

Institut für Biochemie, Universität zu Köln, Otto-Fischer-Str. 12-14, D-50674 Köln, Germany

ABSTRACT.—A new iridal, (6R,10S,11S)-17,29-didehydroiridal [5], has been isolated from a rhizome extract of *Iris sibirica*. Its structure was elucidated by spectroscopic methods. The compound is presumably derived from the 17,29-dehydrogenation of iridal [1].

During previous investigations, we were able to isolate numerous iridals, representing a family of unusual monocyclic, bicyclic, and spirocyclic triterpenoids (e.g., structures **1–4**), from lipid-soluble extracts of sword lilies (1–3). For studies on the biosynthesis and metabolism of these compounds we periodically isolate preparatively useful amounts (100–200 mg) of 10-deoxy-17-hydroxyiridal

[2] from Iris sibirica L. (Iridaceae) rhizomes, which we use as a starting material for the synthesis of possible intermediates. Upon thorough analysis of the fractions obtained by mplc of the crude extract on RP-18, trace amounts of a new iridal were detected, which showed in its uv spectrum a λ max of 234 nm, so far observed only for the C_{31} cycloiridals (4), thus suggesting the presence of a conjugated diene moiety in the molecule. The compound was isolated by semi-prep. hplc on RP-18. The eims of 5 revealed a molecular ion at m/z 456 and prominent fragment ions at m/z 135 and 69. In conjunction with its 13C-nmr data, a molecular composition of C₃₀H₄₈O₃ was determined for 5. Comparison of the ¹Hand ¹³C-nmr data (Table 1) of 5 with previous results showed the presence of the seco-ring A system typical for all iridals (3). Therefore, the conjugated diene had to be located in the homofarnesyl side-chain. 'H-nmr, 'H,'H-COSY, and ¹H decoupling experiments showed that a bisallylic CH_2 at $\delta 2.7$ was solely coupled to an olefinic proton at δ 5.76, which in turn was connected to a second olefinic methine at δ 6.15. A coupling constant of 16 Hz indicated the E configuration of the double bond. The signal at δ 6.15 showed allylic coupling to a signal at δ 5.00, which was derived from one proton of an olefinic CH₂ group, the other appearing at δ 4.95. Therefore, a = C(R)- CH_2 -CH=CH-C(R)= CH_2 grouping had to be present. This moiety is located in the center of the homofarnesyl chain, since a bisallylic CH2 group cannot be positioned at C-12 and because an ole-

TABLE 1. ¹³C- (100.6 MHz) and ¹H- (400 MHz) Nmr Data of **5**.*

Position	¹³ C Nmr ^b	¹H Nmr°
1	190.1	10.41 (s)
2	132.0	
3	63.6	3.29 (t, 6)
6	44.0	3.21 (br d, 12)
7	162.4	
10	75.1	
11	45.5	
14	125.5	5.16 (br t, 7)
15	135.1	
16	44.1	2.72 (d, 7)
17	127.2	5.76 (dt, 16, 7)
18	134.8	6.15 (br d, 16)
19	146.9	
22	126.2	5.21 (br t, 7)
23	133.9	
24	26.5	1.66 (br s)
25	11.8	1.89 (s)
26	18.6	0.91 (s)
27	26.7	0.77 (s)
28	16.9	1.65 (br s)
29	114.8	5.00 (br s), 4.95 (br s)
30	18.4	1.54 (br s)

¹Run in $C_6H_6-d_6$. Assignments are based on ¹H, ¹H- and ¹H, ¹C-COSY experiments and comparison with data of other iridals (3).

^bIn addition, signals for CH₂ groups at δ 38.2, 37.8, 33.6, 33.4, 28.0, 27.7, 24.5, and 23.4 were not assigned.

Chemical shifts δ (ppm) relative to TMS. Signal multiplicity and coupling constants (Hz) are in parentheses.

finic proton at δ 5.21 showed allylic coupling to two methyl groups (δ 1.66 and 1.54), proving that the terpenoid chain is terminated by a common isoprene unit. Additional confirmation was given by the eims fragment ions at m/z 69 and 135, which are derived from cleavage of the side-chain between C-20/C-21 and C-16/C-17, respectively. Thus, from these spectral data, compound 5 was identified as 17,29-didehydroiridal. From biosynthetic considerations and from the identical nmr data of the ring system, we have assigned to 5 the same (6R,10S,11S)configuration as found for all iridals (5). This is the first example of a monocyclic iridodiene. As pointed out earlier (6), the more common iridotrienes (e.g., 4) develop by dehydrogenation of iridal [1] at

C-16/C-17. Presumably the dehydrogenase responsible for this reaction abstracts hydrogen from C-17 and C-29 to a minor extent, thus forming compound **5**.

EXPERIMENTAL

GENERALEXPERIMENTAL PROCEDURES.—Analytical hplc: Kontron model 200; column, LiChroCart RP-18 (125 mm, 4 mm i.d., Merck); solvent, MeOH-H₂O, 7:3 (5 min), linear gradient to 100% MeOH (15 min), 100% MeOH (20 min); flow rate 1 ml/min; detection, Hewlett-Packard-1040A diode-array detector. Uv spectra were recorded during each hplc analysis. Prep. hplc: Altex model 420; column, Spherisorb 5 ODS (240 mm, 5 mm i.d.). Mplc: Büchi model 681; column, RP-18 14–40 μm (240 mm, 20 mm i.d.). Nmr spectra: Bruker AM-400 (¹H: 400 MHz, ¹³C: 100.6 MHz) in C₆H₆-d₆. Eims: Finnigan-MAT 4510 gc-ms (70 eV).

PLANT MATERIAL.—Rhizomes of *I. sibirica* were purchased from Bornträger & Schlemmer, D-67591 Offstein, Germany, in April 1992.

EXTRACTION AND ISOLATION.—Extraction of the rhizomes was performed as previously described (7) to yield 2.5% of the essential oil. The crude extract (4 g) was separated by mplc using a MeOH-H₂O (70:30) to MeOH gradient. The fractions eluting with MeOH-H₂O (75:25) contained inter alia compound 5, which was purified by prephplc (MeOH-H₂O, 80:20) to give 9.8 mg (0.25%) of a glassy solid, which proved to be very labile, rapidly decomposing in different solvents or in the dry state. Because it is stable for some time in C₆H₆ solution, the nmr spectra were recorded using this solvent.

(6R, 10S, 11S)-17,29-Didebydroiridal [**5**].— Uv λ max (MeOH) 234, 255 (sh) nm; eims m/z 456 [M]⁺ (3), 438 (1), 387 (1.5), 369 (1), 135 (100), 109 (50), 93 (53), 69 (67), 43 (55); ¹H- and ¹³C-nmr data, see Table 1.

ACKNOWLEDGMENTS

We wish to thank Dr. H. Röttele, Karlsruhe, for recording the nmr spectra. Financial support from the Deutsche Forschungsgemeinschaft, Bonn (Ma 1172/2-2), the Fonds der Chemischen Industrie, Frankfurt/Main, and the Verein der Freunde und Förderer der Universität zu Köln is gratefully acknowledged.

LITERATURE CITED

- L. Jaenicke and F.-J. Marner, Pure Appl. Chem., 62, 1365 (1990).
- A. Littek and F.-J. Marner, Helv. Chim. Acta, 74, 2035 (1991).

- 3. F.-J. Marner and I. Longerich, *Liebigs Ann. Chem.*, 269 (1992).
- W. Krick, F.-J. Marner, and L. Jaenicke, Z. Naturforsch., 38c, 179 (1983).
- 5. F.-J. Marner and L. Jaenicke, *Helv. Chim. Acta*, **72**, 287 (1989).
- F.-J. Marner, I. Ritzdorf, and G. Johnen, Phytochemistry, 33, 573 (1993).
- F.-J. Marner, A. Littek, R. Arold, K. Seferiadis, and L. Jaenicke, Liebigs Ann. Chem., 563 (1990).

Received 15 August 1994